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ABSTRACT--A highly parameterized simulation model is described which allows experi-

ments to be performed for computer performance evaluation studies. The results of these

expeririments can be used to evaluate the effect of changing the hardware configuration,

the workload, the scheduling policy, the multiprogramming level, etc. The model is

constructed to function either as a batch or time-sharing system, or as a combination of

both. This simulation model also has the potential of providing dynamic feedback for the

scheduler. A discussion of the design, implementation, and use of the model is presented.

Examples are provided to illustrate some possible uses of the model and verifications of

the results obtained from the model.

KEYWORDS--Simulation model, queue, scheduling policies, workloads, hardware config-

uration, model validation, system performance, events, cumulative distribution function.
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I. INTRODUCTION

In order to provide sufficient information for evaluating changes to computer

systems, both the hardware and software must be evaluated with respect to the efficiency

in performing their required tasks. There are certain realistic constraints which make it

virtually impossible to effect changes to existing systems for the purpose of studying

computer system performance. Many of these constraints, however, may be overcome by

the use of a flexible computer simulation model [2].

An emphasis of this investigation is to focus on providing a tool for assisting

analysts in making decisions on different scheduling strategies. In order to develop such a

tool, it is obvious to this investigator that a fairly complex model of a computer system is

required.

This paper describe8 a highly parameterized simulation model which allows experi-

ments to be performed for which the hardware configuration, the workload, and the

scheduling policy can vary. The model is event-driven and is designed to accommodate

systems as simple as batch with uniprogramming, to more complex systems which make

use of time-sharing, multiprogramming, and virtual memory principles. Major components

of the model are described in the next section of this paper.

Several experiments are presented to illustrate the potential use of the simulation

model. Typical output from the model includes: performance indicies (i.e., response

time, throughput rate, dilation, paging rate, swapping rate, etc.), queue statistics,

utilization measures, and a profile of the system. This output is available at the job-step

level or at the overall system level, and is broken down by system overhead and users'

statistics.

This model may serve as a tool for providing guidance to system analysts, capacity

planners, and individuals involved in courses such as system programming, operating

systems, simulation, and performance measurements/evaluations.
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II. DESCRIPTION OF MODEL

The model is written in a high-level language--ANSI standard FORTRAN--and is

implemented on a CDC Cyber 150 computer. There are several components to the model,

and each component corresponds to a FORTRAN subroutine. These components and their

functions will be examined after a discussion of the flow of transactions through the

system.

The high-level flow of jobs (job-steps) through the system is dipicted in Figure 1.

Each job-processing step listed below corresponds to an event within the model 7

Step 1:

A job (batch or interactive) arrives randomly or according to a specified distri-

bution. Upon arrival, the following job characteristics are determined either randomly or

according to a pre-defined distribution: (1) the total CPU time, (2) the average amount of

central memory (CM) requested, and (3) the number of I/O requests.

Step 2:

The job makes a request for CM allocation. If the CM space requested is not

available, the job enters the CM queue.

Step 3:

After the job enters the CM, it immediately requests the CPU. If the CPU is free, it

is assigned to the job and executes until some blocking condition occurs (i.e.. a system

interrupt, the time-slice used up, the job is comnpleted, or an 1/O r equest is encountered).

In the former two cases, the job releases the CPU, but is placed back into the CPU queue.

Step 4:

When a job issues an 1/O request, the CPU is released, and a specific disk is

requested. Since the total CPU time and the number of disk requests for a job are

predetermined, it is assumed that the inter-I/O request time is constant for a given job.

Step 5:

In order for a job to access a designated disk, both the disk and the associated

channel must be free. Otherwise, the job enters a disk queue. If the disk and the channel
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are both free, a "disk-seek" time is generated. During the "disk-seek" time, the disk is

busy, whereas the channel is not.

Step 6:

* After completing the disk-seek, a "rotational delay" time is generated. When this

time expires, the channel is requested gain, and if available, the data is transferred over

the channel. The disk and the channel are both busy during the "transfer" time.

Step 7:

When the data transfer is completed, the disk and the channel are both freed, and

the job proceeds to request the CPU again.

Step 8:

Upon completing all the CPU and I/O tasks for a given job, the CM allocated for

that job is released. If the job is a batch job, it leaves the system; otherwise, the job is

an interactive job, and has just completed a "system response cycle", so a "user think-

time" is generated.

III. JOB EVENTS

The job-processing steps listed by Steps 1-8 represent only a subset of the events

within the model. Other events included in the model are highlighted by Figure 2. Those

events which appear in the flowchart boxes have event-times which are predetermined

and, therefore, can be placed on the future-event list. The set of events whose event-

times cannot be determined in advance are just listed below the flowchart (refer to Figure

2). For example, if a batch job is in the CM-queue, the next event is requesting CM; but

since it depends on when other jobs will leave the system and make space available, the

event time cannot be determined. On the other hand, if a job seizes the CPU at time to0

and the inter-I/O request time T is known, then the next event for this job (release the

* CPU) can be scheduled at time t 0+T, and hence placed on the future-event list.

IV. QUEUE STRUCTURE FOR MODEL

The model consists of several queues (i.e., future-event queue, CM queue, CPU

queue, channel queue, free-record queue, disk queue, etc.). Each of these queues forms a
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ring with a coincident head and tail. Records in the queues are constructed as doubly-

linked lists with pointers to the immediate predecessors and successors.

3ob-records in the future-event queue are always in ascending order of the next

event-time, whereas jobs in each waiting queue are always in decending order of job

priority.

Figure 3 illustrates a typical queue structure for job-records within the model.

Notice that a job (job-record) can only appear in one of the queues at a time, and that

records which are not currently active are attached to the free-record queue.

The average queue length (Z n) can be derived as follows:

In o [£(t 1-t0)+£1 (t2-tl1)+'" "+ n-1l(tn-tn-1 ) ]/ (tn- to)

6 t 0 + (Io-i ) t i+(£n1-2)t2+"+(£n- l-n ) tn+kntn] / (tn-to)

n
"[E (I i-1i) ti+ntn]/t

n

i-1
n

I n E (I i- 1-ki) ti 1/tn kn
i- 1

where {t in denotes the time when a job enters or leaves the queue, and I. is the queue

length at time ti, with to=o. This formula was used throughout the model for calculating

average queue lengths.

V. THE GENERATION OF DISTRIBUTIONS

Distributions used by the model are generated via a set of Cumulative Distribution

Functions (C.D.F.s). These C.D.F.s are defined by the user supplying a set of discrete

functions (e.g., 11 points), thus permitting the generation of a desired distribution. As an

example, assume that the job arrives according to Poisson distribution with mean = 3

jobs/sec. Then, the inter-arrival time (random variable X) is known to have an exponential

distribution of mean 9 = 1/3, hence the C.D.F. function can be approximated as follows:
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F X!st e/=0 - ,3 t whereF [X t]

takes on the values 0.0, 0.1, 0.2, ..., 0.9, 1.0:

F [X !5 t ] j 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.9995

t(approx.)I 0 0.0351 0.0744 0.1189 0.1703 0.2310 0.3054 0.4013 0.5365 0.7675 2.534

Here, since F [ X ! t ] equals 1.0 only when t - - , we use the value 0.9995 in order

to avoid t = - . The approximated C.D.F. is shown in Figure 4(a).

After the C.D.F. has been approximated, and a sample is desired from this

distribution, we only need to generate uniformly distributed random numbers over the unit

interval (0,1), and perform an inverse transformation on the C.D.F.. This transformation

involves a table look-up and a linear interpolation procedure to obtain sample values. A

possible pitfall of this approach is that when a discrete function is used to approximate a

continuous function, some error must be tolerated. Figure 4(b) illustrates the case where

a value x' may be generated which is slightly larger than the actual value x. Clearly, as

the number of points used to approximate a function increases, the accuracy of the

sample values also increases.

Another problem related to the generation of various distributions in modelling is

the independence of the set of random numbers generated for different distributions. For

this model, the independence of the generation of jobs within job-classes was achieved by

using a different random-number seed for generating each job-class.

VI. MODELLING VARIOUS COMPONENTS OF SYSTEM

HARDWARE (see Figure 1) - The following hardware is modelled, and can be

configured in various ways.

CPUs

DISKS

CHANNELS

TERMINALS

MEMORY

6
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The timings of the hardware components are relative, and may be redefined by the user.

SOFTWARE - In order to simplify the model, the details of the operating system are

not modelled explicitly; instead, timings for system overhead are included in system tasks

(i.e., paging, swapping, scheduling, etc.) [El]

PAGING - Paging is modelled as a high-priority system job which is activated at a

certain rate (specified as a parameter by the user). This high-priority job will use the

CPU, channel, and the disk to read/write one page of data. By using this approach for

modelling paging, the contention for devices can be simulated very easily.

The paging rate is defined for some fixed multi-programming level (i.e., MPL=7),

and will vary as a function of: (1) the number of interactive users, (2) the memory size,

and (3) the MPL level.

SWAPPING - Swapping is not modelled explictly; instead it is modelled as a high-

priority system job which is activated when (1) TTY jobs get into or out of think-time (CM

is actually freed), or (2) jobs request disk 1/O, but are blocked. An input parameter

controls the swapping rate. If the CM-queue length is greater than this input parameter,

swapping occurs.

The system resources used by swapping are: the CPU, disk, and the channel.

STORAGE ALLOCATION - the acquisition and release of main storage for the

application programs are modelled. The user specifies the memory size via input

parameter.

SCHEDULING - Originally, jobs coming from the same class (batch, system, or

interactive) are assigned the same priority (specified as a parameter). This convention

may be altered if it is desired to assigned different priorities to jobs within the same

class. Each time a job changes queues, its priority is recalculated. The calculation

proceeds as follows:

Internal priority =original priority + (CPU time used) x weight1I

+ (system residence time) x weight 2 + (CM size) x weight 3
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where weight1 are input parameters.

By altering input parameters such as initial job priority, internal priority weight,

quantum size, MPL, etc., different scheduling algorithms can be investigated. Since the

model collects statistics such as queue lengths, and utilization information, the results of

this statistics can be used to provide dynamic feedback to the scheduler [(31.

WORKLOAD - Each batch job-class is characterized by its CM request, CPU time,

and numiber of disk 1/O requests. An interactive job is characterized by its CM request,

CPU time, number of disk I/O requests, and the length of its think-time. These job

characteristics are defined by distribution functions. For example, a user's think time

may be simulated by sampling from an exponential distribution with mean =16 [ 5] An

approach for generating representative workload data to drive a simulation model will be

discussed in a forthcoming paper.

VIII. MODEL VALIDATION AND EXPERIMENTAL RESULTS

It is an established fact that the validation of a simulation model is a complex

process (4]. This model was validated by (I) verifying the logic of the FORTRAN

program, (2) using a constant model to verify the accuracy of the statistics produced by

the simulation model, and (3) using stochastic processes to check the correctness of the

simulation. Since the first two steps used for validation are straightforward, the results

which make use of stochastic processes (step 3) are presented in experimen~ts which

follow.

Experiment 1.

no. of CPU I

no. of disk I1

no. of channel I

size of CM =300K words

multiprogramming level =I (uniprogramming)
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The job-parameters were:

mean arrival rate A =3 jobs/second (Poisson distributed) from a single batch
class.

mean CPU service time 11=O.1 sec/job

mean disk service time j1 2=0.05 sec/job distributed exponentially.

avg. CM request per job = 50K words I

The system is depicted in Figure 5. A job enters the system only when there is no other

job running. It uses one half of the CPU time requested, visits the disk once, uses the

second half of the CPU time, then leaves the system. It should be noted that the channel

is not modelled here, since no contention exists for it in a uniprogramming mode.

The simulation results are tabulated in Table I along with the analytic results. An

explanation for the calculations made in rows 1-6 of Table I is given below.

1. Row I -- A is given as an input parameter. ( A =3)

2. Row 2 -- the CPU utilization ( U CPU) is calculated as:

U CPU= 3 x1 =3 "0 x 0. 1 =0.3

3. Row 3 -- the disk utilization (U disk) is calculated as:

U disk= X IJ2 =3. 0 x0.05=0.15

4. Row 4 -- the turnaround time R is calculated as:

X E service time 2)/2
R = E(service time) + I - X E(service time)

3

(0. 1-3(5)) o.15) 2(905)(o.1

= 0.15 + 0.075 = 0.245 seconds

5. Row 5 -- avg. CM queue length = total wait time/total time

= (turnaround time - service time) x (no. of job completion)/total time

= (0.245-0.15) x throughput z 0.095 x 3.0 = 0.285

6. Row 6 -- avg. CM utilization = E(service time) x E(CM request) x throughput/CM size

(0.15) x (50) x 3.0/300 = 7.5 x 3.0/300 = 0.075
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Also, the Operational Approach proposed by Buzen [ 8] can be used to check the

consistency of the model as follows:

Little's law states that the average number (n) of jobs in the system, including those

waiting in the CM-queue, is given by:

n = xR where x = throughput

R turnaround time.

Hence, we have

R =nx

Now, n = avg. CM queue length + U CPU + U disk

= 0.184 + 0.296 + 0.149 0.629 in the 400-job case,

and x z 2.48, hence

R = n/x 0.629 x 2.48 = 0.255 seconds, which is close to the result for the 400-job

case.

Experiment 2.

To further validate the model, let's suppose that during a job's access to the disk, a

disk-seek time and a latency (rotational delay) time were generated. Consider the

following configuration:

no. of CPU J I

no. of disk = I

no. of channel = I

size of CM = 300K words

multiprogramming level = I (uniprogramming)

The job-parameters were:

mean arrival rate X = jobs/second (Poisson dsitributed) from a single batch

class.

avg. disk-seek time 0.04 seconds distributed exponentially.

avg. latency = 0.01 seconds /

10



The system is depicted in Figure 6, and the results are shown in Table 2.

Considerably more validation was done on the simulation model, but will not be

presented in this paper [ 4 ] . The remaining experiments are presented to illustrate some

of the more interesting outputs from the model. Appendix I contains an example of a

system profile produced by the model. A system profile enables one to observe the degree

of overlap of resource utilization during a selected time interval.

Experiment 3.

This experiment is to investigate the effects of varying the quantum (time-slice)

size and observe the performance of a multiprogramming computer system. The system

under study has the following configuration:

no. of CPU =I

no. of disks =8

no. of channels =2; 4 disks/channel

size of CM = 128K

multiprogramming level = 10

system overhead due to job-swapping = 2 to 3 msec.

The impact of various quantum sizes on the system's behavior is plotted in Figure 7.

Basically, for quantum sizes of 1.0 to 0.3 seconds, the system performs much the same,

because the average inter-I/O time is relatively small compared to the quantum sizes. As

the quantum size decreases to 0.08 seconds, the turnaround time and the CPU queue

length are considerably reduced, hence we get better performance from the system.

However, if the size of the time-slice gets too small, the system overhead increases

significantly, and therefore degrades the system performance. So, this simulation can

provide some guidelines for determining the size of the time-slice.

Experiment 4.

In order to analyze the effects of different multiprogramming level (MPL) on the

sytem performance, a set of experiments was performed with various MPLs. The general



configuration is depicted in Figure 1, with the following specifications:

no. of CPU = I

no. of disks = 8

no. of channels = 2; 4 disk/channels

size of CM =128K

quantum size =0.1 second

disk-seek time =0.04 seconds

rotational delay = 0.01 distributed exponentially.

disk service time = 0.2 seconds)

Batch jobs (jobsteps):

mean arrival rate X = 1/2.8 jobs/second (Poisson distributed)

mean CPU service time = 2.0 seconds

avg. no. of disk I/0 = 5 times dsrbtdepnnily

Interactive jobsteps:

no. of terminals = 10

user think-time, Z = 18 seconds

mean CPU service time = 0.2 seconds distributed exponentially.

avg. no. of disk 1/0O 2 times

The system also has paging and swapping overhead as explained in previous sections.

Figure 8 shows the plot of the MPL vs system performance in terms of batch

turnaround-time, TTY response time, system overall throughput, and system overhead,

etc.

Experiment 5.

Suppose that the system is now dedicated to interactive users, and we wish to study

the behavior of the response-time as the number of terminals increases. The system has

the same configuration as described in Experiment 4, except that the MPL is set at 7.

Workload characteristics for this experiment are described by the following parameters:
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mean CPU service time per interaction 0.2 seconds,

avg. no. of disk I/0 requests =2 times distributed exponentially.

user think-time = 18 secondsJ

Figure 9 shows the various performance indices obtained as a result of varying the number

of terminals.

VIII. SUMMARY AND CONCLUSION

We have presented a general-purpose simulation model which is capable of simu-

lating a wide variety of computer systems. The major advantages of this model can be

characterized as the following:

i. the structure of the model is general enough to be tailored for many computer

systems, and yet,

ii. the model is highly parameterized so that it can closely approximate a real system

by specifying the hardware and software configurations;

iii. the (batch and interactive) workloads that drive the simulation model can also be

defined handily by a set of job-parameters;

iv. the model can be easily modified to accomodate different scheduling algorithms.

Several uses of the model may be cited. It can serve as a tool for the analysis of

system performance due to upgrading or changing scheduling policies. It may also be used

to predict the system's future performance with different workloads. Section VII

illustrated some of these applications by a set of experiments. While the numerical

results of the simulation model may not be completely accurate; it nevertheless indicates

the trend of improvements or degradations, thereby providing guidelines to the analysis of

complex computer systems.

ACKNOWLEDGEMENTS

I would like to express my appreciation for two graduate students (Liang Li and Jeff

Perdue) who provided a significant contribution to the development of this paper.

13



APPENDIX I

SYSTEM PROFILE FOR THE SIMULATION RUN:

CPU AND CHANNEL STATUS: 0-IDLE; 1-BUSY.

CPU 1 TIME FOR EACH COMBINATION

0 136.579

1 879.810

CHANNEL 1 2 3 TIME FOR EACH COMBINATION

O 0 0 289.946

o 0 1 70.455

O 1 0 206.797

O 1 1 40.659

1 0 0 154.167

1 0 1 31.632

1 1 0 193.887

1 1 1 28.627

SYSTEM TIME 1016.369 I ------------------------------------------------------ I

CPU ONLY 286.993 I ------------------

CPU BUSY 879.810 I -----------------------------------------------

CPU-CHANNEL 592.818 I ---------------
OVERLAP

CHANNEL BUSY 726.443 1----------------------------------------------I

CHANNEL ONLY 133.625 I --- I
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ITEM Simulation --results Theoretical

200 jobs 300 jobs 400 Jobs results

Mean arrival rate X 2.52 2.68 2.48 3.00
(v throughput)

Avg. CPU utilization 0.293 0.295 0.296 0.300

Avg. disk utilization 0.147 0.148 0.149 0.150

Turnaround time 0.242 0.232 0.255 0.245

Avg. CM queue length 0.166 0.172 0.184 0.285

Avg. CM utilization 0.090 0.083 0.085 0.075

TABLE 1. Simulation and Analytic Results for Experiment #1

Simulation results for 300 jobs

ITEM seek & latency Theoretical
Seek & latency exponentially results
constant distributed

Mean arrival rate X 0.296 0.296 0.333
(~throughput)

Avg. CPU utilization 0.656 0.656 0.667

Avg. disk utilization 0.146 0.156 0.150

Avg. channel utilization 0.135 0.143 0.133

Turnaround time 4.684 4.732 4.689

Avg. CM queue length 0.574 0.578 0.658

TABLE 2. Simulation and Analytic Results for Experiment #2
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A record node has the following format:

(pointer)

predecessor user-job successor where (pointer) is the
link number link record number

For example,

15(201) (202) 209)

Dummy queue-head 1 Dummy queue-head 2 Dummy queue-head 9

L 120~ 2 O

To put the above queues in the form of an array, we have:

RECORD JOB

NO. PRE NO. SUC

1 201 1 2

2 1 2 201
Record
nodes

15 202 3 202

201 2 V///A
202 15 // 15

dummy
queue-heads

209 209 209

FIGURE 3. Doubly-linked queue structure in the model.
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FIGURE 7(b) Turnaround and CPU-queue length for various quantum sizes.
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